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Our idea

The Inequality of Opportunity (I0p) framework often focuses on a
set of inherited factors (parental background) plus sex, ethnicity,...

Most of these studies study |Op "within countries”. What if we
widen the focus?

We explore |0p taking Europe as a whole region, using traditional
inherited factors and the country of origin.



Ex-ante approach to I0p (Roemer (1998), Van De Gaer
(1993))

Define an outcome y and a vector ¢ denoting circumstances.
Types are groups of individuals sharing circumstances. Equality of
Opportunity (EOp) is:

EOp < V(c,c), 7lc =7y (1)

Estimating y; as y for all types, and using a suitable inequality
measure /(), then:

10p = 1(3;) (2)



Data

Three data sources: EUSILC (EU-27, excluding Romania and
Slovenia, including Norway, and Switzerland), SOEP (Germany),
AND UKUS.

The wave of interest: 2019

Outcome: age-adjusted equivalised disposable household income in
2019 USD (PPP).

Circumstances at age 14: country of origin (60+17), father's and
mother's education (3), father's and mother’s occupation (11), sex

(2)-



Data: Country of Origin

We use EU-SILC information to separate natives from foreign-born.

For the latter group, we use the country of origin of the mother
(available in the 2019 EUSILC wave).
® May bear mistakes.
® People may choose to migrate, but the country of origin bears
much more information.
® Relevant cultural aspects (religion, language, social norms)
transmitted from mothers to children (Caneva and Pozzi,
2014).



Data: Setting Europe as the region of interest

First, we pool surveys. Then use census data (EUROSTAT) to
construct weights such that we:

Draw a random sample representative of population shares of
residents.

Within each country, samples are representative of relative shares
of countries of origin (up to 0.1% of the country’s population).

N: Around 138,268 observations.



Conditional Inference Trees and Random Forests (Hothorn
et al. (2006))

Recent contributions (Brunori et al., 2023b) show these algorithms
suitable to estimate ex-ante IOp. Two main steps:

e Correlation test for each C and y, for some
Bonferroni-adjusted p-value.

® After the most correlated C is selected, mean-test across all
possibly binary partitions.

Tree: just one (main) sample

Forest: 200 random samples using the above proportions.
Issue: To make the problem finite, the split of unordered
categorical factors in the second step is capped at 30 categories.



Methods: our trick (checked with Horthorn, works!)

In every node, we re-order the values of the unordered categorical
C by mean y. Then:

® Run correlation test.

® If C (re-ordered) is selected, then use it as ordered categorical.

The idea: After each partition, categories will always be grouped
according to their expected outcome being smaller or higher than
the splitting point!



Results: 10p (Gini index)

Overall: I(y); 10p: 1(¥); Rel. 10p: §/1(y)

Overall 10p Rel. 10p | 10p (for- | Rel. 10p
(tree) (tree) est) (forest)
0.39 0.24 0.62 0.22 0.56

Source: Own elaboration, data from EU-SILC, UKUS, GSOEP. The tree
is estimated with @ = 0.01, and minbucket = 100. The random forest
is estimated with a = 0, minbucket = 50, and 200 bagging subsamples
of 0.1 the original sample size.



Results: First splits in the main tree
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Results: Shapley Value Decomposition (as in Brunori et al.
(2023a))

Circumstance Contribution to 10p (%)
Country of origin 62.4

Father's occupation 18.2

Mother's occupation 8.8

Father's education 5.7

Mother’s education 3.8

Sex 1.3

Source: Own elaboration, data from EU-SILC, UKUS, GSOEP. The Shapley
value decomposition is estimated with a random forest procedure, with
a = 0.1, minbucket = 50 and 100 bagged repetitions sized 0.1 the original
sample size.



Results: Migration Premium (I)

Very simple exercise: Yyt = ¥/ GDPpc,

Quintile




Results: Migration Premium (1)
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Results: Migration Premium (lII)
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Results: Heterogeneity in the DGP: Main circumstance
from country-specific Shapley

Max Shapley value

. Country of birth
- Father occupation
- Mother occupation




Final remarks

There is always a way to trick an algorithm!

IOp in Europe, as a region, is huge: 22 Gini points, around 56% of
overall inequality. Far from convergence.

Country of origin explains a remarkable share (around 62% of 10p)

Migration premium is quite heterogeneous across countries:

® By regions: SSA and South-Eastern Asia are especially
benefited.

® In Europe: the Nordic and central (France, ltaly,
Switzerland,...) also get relatively more.
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